ترجمه مقالات

دانلود مقالات ترجمه شده و دریافت رایگان متون انگلیسی

ترجمه مقالات

دانلود مقالات ترجمه شده و دریافت رایگان متون انگلیسی

وب دانلود رایگان مقالات انگلیسی و خرید ترجمه مقالات
کلمات کلیدی

دانلود ترجمه مقالات بازاریابی

تجارت

مقاله ترجمه شده مکانیک

مقاله در مورد تجارت الکترونیک

مقاله انگلیسی رضایت مشتری

مقاله درباره تولید پراکنده (DG)

مبدل منبع ولتاژ

مقاله در مورد سفته باز

مقاله در خصوص بنیادگرایان

مقاله انگلیسی حباب احتکار

مقاله انگلیسی بازارهای کارا

بانکداری و امور مالی

مقاله در مورد تحقیقات بتزاریابی آسیا

مقاله انگلیسی جهانی سازی

دانلود مقاله در مورد رفتار مصرف کننده

دانلود مقاله تحقیقات بازاریابی بین المللی

مقاله روابط کاهندگی موج برشی و ویسکوزیته گوشته

مقاله درباره توموگرافی امواج سطحی

مقاله در خصوص درجه حرارت گوشته

دانلود مقاله ضخامت لایه لیتوسفر

ترجمه مقالات زمین شناسی

مقاله درباره رضایت مالیات دهنده

مقاله در خصوص تحلیل عامل درجه دوم

مقاله انگلیسی کیفیت اطلاعات

دانلود کیفیت سیستم

دانلود مقاله سیستم ثبت مالیات آنلاین

مقاله درباره اجرای عملیاتی

مقاله در خصوص مطالعه رویداد

مقاله انگلیسی برون سپاری منابع انسانی اداری

مدیریت منابع انسانی

۱ مطلب با کلمه‌ی کلیدی «مقاله درباره داده کاوی» ثبت شده است

عنوان اصلی لاتین : An effective parallel approach for genetic-fuzzy data mining


عنوان اصلی فارسی مقاله: روش موازی اثربخش برای داده کاوی ژنتیکی - فازی


مرتبط با رشته های : فناوری اطلاعات IT - داده کاوی


نوع فایل ترجمه : ورد آفیس(که دارای امکان ویرایش می باشد)


تعداد صفحات فایل ترجمه شده: 23 صفحه


کلمات کلیدی مربوطه با این مقاله: داده کاوی، مجموعه های فازی، الگوریتم ژنتیک، پردازش موازی، قاعده اتحادیه


برای دریافت رایگان نسخه انگلیسی این مقاله اینجا کلیک نمایید

_______________________________________
چکیده ترجمه:
مهم‌ترین کاربرد داده کاوی در تلاش‌هایی است که برای استنتاج قواعد وابستگی از داده‌های تراکنشی صورت می‌گیرد. در گذشته، از مفاهیم منطق فازی و الگوریتم‌های ژنتیکی برای کشف قواعد وابستگی فازی سودمند و توابع عضویت مناسب از مقادیر کمی استفاده می‌کردیم. با وجود این، ارزیابی مقادیر برازش نسبتاً زمان بر بود. به دلیل افزایش‌های شگرف در قدرت محاسباتی قابل دسترسی و کاهش همزمان در هزینه‌های محاسباتی در طول یک دهه‌ی گذشته، یادگیری یا داده کاوی با به کارگیری تکنیک‌های پردازشی موازی به عنوان روشی امکان پذیر برای غلبه بر مسئله‌ی یادگیری کند شناخته شده است. بنابراین، در این مقاله الگوریتم داده‌ کاوی موازی فازی – ژنتیکی را بر اساس معماری ارباب - برده  ارائه کرده‌ایم تا قواعد وابستگی و توابع عضویت را از تراکنش‌های کمی استخراج کنیم. پردازنده‌ی master مانند الگوریتم ژنتیک از جمعیت یگانه‌ای استفاده می‌کند، و وظایف ارزیابی برازش را بین پردازنده‌های slave توزیع می‌کند. اجرای الگوریتم پیشنهاد شده  در معماری ارباب – برده بسیار طبیعی و کارآمد است. پیچیدگی‌های زمانی برای الگوریتم‌های داده کاوی ژنتیکی – فازی موازی نیز مورد تحلیل قرار گرفته است. نتایج این تحلیل تأثیر قابل توجه الگوریتم پیشنهاد شده را نشان داده است. هنگامی که تعداد نسل‌ها زیاد باشد، افزایش سرعت الگوریتم ممکن است نسبتاً خطی باشد. نتایج تجربی تیز این نکته را تأیید می‌کنند. لذا به کارگیری معماری ارباب – برده برای افزایش سرعت الگوریتم داده‌ کاوی ژنتیکی – فازی   روشی امکان پذیر برای غلبه بر مشکل ارزیابی برازش کم سرعت الگوریتم‌ اصلی است.
کلمات کلیدی:
1- مقدمه
با پیشرفت روزافزون فن آوری اطلاعات (IT)، قابلیت ذخیره سازی و مدیریت داده‌ها در پایگاه‌های داده‌ اهمیت بیشتری پیدا می‌کند. به رغم اینکه گسترش IT پردازش داده‌ها را تسهیل و تقاضا برای رسانه‌های ذخیره سازی را برآورده می‌سازد، استخراج اطلاعات تلویحی قابل دسترسی به منظور کمک به تصمیم گیری مسئله‌ای جدید و چالش برانگیز است. از این رو، تلاش‌های زیادی معوف به طراحی مکانیسم‌های کارآمد برای کاوش اطلاعات و دانش از پایگاه داده‌های بزرگ شده است. در نتیجه، داده کاوی، که نخستین بار توسط آگراول، ایمیلنسکی و سوامی (1993) ارائه شد، به زمینه‌ی مطالعاتی مهمی در مباحث پایگاه داده‌ای و هوش مصنوعی مبدل شده است.

جهت دانلود محصول اینجا کلیک نمایید

بخشی از مقاله انگلیسی


The goal of data mining is to discover important associationsamong items such that the presence of some items in a transactionwill imply the presence of some other items. To achieve this pur-pose, Agrawal and his co-workers proposed several mining algo-rithms based on the concept of large itemsets to find associationrules in transaction data (Agrawal & Srikant, 1994; Agrawal et al.,1993). They divided the mining process into two phases. In the firstphase, candidate itemsets were generated and counted by scan-ning the transaction data. If the number of an itemset appearingin the transactions was larger than a pre-defined threshold value(called minimum support), the itemset was considered a large