ترجمه مقالات

دانلود مقالات ترجمه شده و دریافت رایگان متون انگلیسی

ترجمه مقالات

دانلود مقالات ترجمه شده و دریافت رایگان متون انگلیسی

وب دانلود رایگان مقالات انگلیسی و خرید ترجمه مقالات
کلمات کلیدی

دانلود ترجمه مقالات بازاریابی

تجارت

مقاله ترجمه شده مکانیک

مقاله در مورد تجارت الکترونیک

مقاله انگلیسی رضایت مشتری

مقاله درباره تولید پراکنده (DG)

مبدل منبع ولتاژ

مقاله در مورد سفته باز

مقاله در خصوص بنیادگرایان

مقاله انگلیسی حباب احتکار

مقاله انگلیسی بازارهای کارا

بانکداری و امور مالی

مقاله در مورد تحقیقات بتزاریابی آسیا

مقاله انگلیسی جهانی سازی

دانلود مقاله در مورد رفتار مصرف کننده

دانلود مقاله تحقیقات بازاریابی بین المللی

مقاله روابط کاهندگی موج برشی و ویسکوزیته گوشته

مقاله درباره توموگرافی امواج سطحی

مقاله در خصوص درجه حرارت گوشته

دانلود مقاله ضخامت لایه لیتوسفر

ترجمه مقالات زمین شناسی

مقاله درباره رضایت مالیات دهنده

مقاله در خصوص تحلیل عامل درجه دوم

مقاله انگلیسی کیفیت اطلاعات

دانلود کیفیت سیستم

دانلود مقاله سیستم ثبت مالیات آنلاین

مقاله درباره اجرای عملیاتی

مقاله در خصوص مطالعه رویداد

مقاله انگلیسی برون سپاری منابع انسانی اداری

مدیریت منابع انسانی

۱ مطلب با کلمه‌ی کلیدی «جنگل‌های تصادفی (RF ها)» ثبت شده است

عنوان اصلی لاتین مقاله: A Data-Mining Model for Protection of FACTS-Based Transmission Line
عنوان اصلی فارسی مقاله: یک مدل داده کاوی برای حفاظت خط انتقال مبتنی بر ادوات فکتس
مرتبط با رشته های: مهندسی برق - الکترونیک
فرمت فایل ترجمه شده: ورد آفیس(امکان ویرایش)
تعداد صفحات فایل ترجمه شده: 14
جهت دانلود رایگان نسخه انگلیسی این مقاله اینجا کلیک نمایید
ترجمه ی سلیس و روان مقاله آماده ی خرید می باشد.
_______________________________________
چکیده ترجمه:
این مقاله یک مدل داده‌کاوی برای شناسائی ناحیه خطای یک خط انتقال مبتنی بر سیستم‌های انتقال ac انعطاف‌پذیر (FACTS) ارائه می‌کند که شامل جبرانساز سری کنترل‌شده با تریستور (TCSC) و کنترلر یکپارچه عبور توان (UPFC) است، و از مجموعه درختان تصمیم استفاده می‌کند. با تصادفی بودن مجموعه درختان تصمیم در مدل جنگل‌های تصادفی، تصمیم موثر برای شناسائی ناحیه خطا حاصل می‌شود. نمونه‌های جریان و ولتاژ نیم سیکل پس از لحظه وقوع خطا به عنوان بردار ورودی در برابر خروجی هدف "1" برای خطای پس از TCSC/UPFC و "1-" برای خطای قبل از TCSC/UPFC ، برای شناسائی ناحیه خطا به کار می‌رود. این الگوریتم روی داده‌‌های خطای شبیه‌سازی شده با تغییرات وسیع در پارامترهای عملکردی شبکه قدرت منجمله شرایط نویزی تست شده است و معیار قابلیت اطمینان 99% با پاسخ زمانی سریع بدست آمده است (سه چهارم سیکل پس از لحظه خطا). نتایج روش ارائه شده  به کمک مدل جنگل‌های تصادفی نشان دهنده تخیص قابل اعتماد ناحیه خطا در خطوط انتقال مبنی بر FACTS است. 
عبارات کلیدی:
رله دیستانس، تشخیص ناحیه خطا، جنگل‌های تصادفی (RF ها)، ماشین بردار پایه (SVM)، جبرانسازی سری کنترل‌شده با تریستور (TCSC)، کنترلر یکپارچه عبور توان (UPFC). 


جهت دانلود محصول اینجا کلیک نمایید